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1. A system of three equations is defined by

kx+3y— z=3
3x— y+ z=—%k
—l6x—ky—kz=k

where £ is a positive constant.
Given that there is no unique solution to all three equations,

(a) show that k=2
(2)
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Using k=2

(b) determine whether the three equations are consistent, justifying your answer.

€))

(c) Interpret the answer to part (b) geometrically.
(1)
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Question 1 continued

Ky -\6 =0 (w+r)(K-2)=0

==X L 2
T given twok K (S Poswive
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elminoke 7 D.DL_%%_Z* -7 =3
m&mgm&@%’ Y a-grz=-2
61(.-\—7.5 = |

elminoke 7 2 (3 — y +2=2¢€2)
0dding 2@ & Cs;)

—\Ox—q% Y2 = —2(6'&*—’).\3—- \)

- loecamse the 1 equokiond ol Lineox MULkip\Ls,
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(Total for Question 1 is 6 marks)
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2. Given that
z, =2+31

|lez| = 39\/5

T
arg(zz,) = Z

where z, and z, are complex numbers,
(a) write z, in the form r(cos@ + isin6)

Give the exact value of » and give the value of € in radians to 4 significant figures.

()

(b) Find z, giving your answer in the form a + ib where a and b are integers.

(6)

r = {22 +2°
=12

= 1B (cos (0281%) + isin (0.982€))

D |z,2,1= 121z,
ony (2,22) = axg(z,) + oug (2,)

Lo

7, = {B(cos (09828) + isin (0.982%))
12\= 3% amy(z))= 0.9828
127, = 3482

\1}\: ?>°|S-7: = ?31__@.:.3@
| 2| {12
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Question 2 continued

§ o (Lu\ - T
org(z,) =

- 0xq (1§ - 0.0%2%

o= rcos® = 3§26 ek (-

>R |, - ¢sin® = 2326 sin(-

)

(Total for Question 2 is 8 marks)
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Figure 1 shows a circle with radius 7 and centre at the origin.

The region R, shown shaded in Figure 1, is bounded by the x-axis and the part of the
circle for which y > 0

The region R is rotated through 360° about the x-axis to create a sphere with volume V'

. . 4
Use integration to show that ' = Enﬁ

C))

30 A3 quoion of checle
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4. All units in this question are in metres.

A lawn is modelled as a plane that contains the points L (-2, -3, —1), M (6, -2, 0) and

N(2, 0, 0), relative to a fixed origin O. C
Z
(a) Determine a vector equation of the plane that models the lawn, giving your answer in 9|
the formr =a + Ab + uc =
=
3) =
m
1 2
(b) (i) Show that, according to the model, the lawn is perpendicular to the vector | 2 g
10 2
(i1)) Hence determine a Cartesian equation of the plane that models the lawn. =
€) =
There are two posts set in the lawn.
There is a washing line between the two posts.
The washing line is modelled as a straight line through points at the top of each post with
coordinates P(—10, 8, 2) and Q (6, 4, 3).
(c) Determine a vector equation of the line that models the washing line. &
(2) o
=
(d) State a limitation of one of the models. 9|
1) =
<2
The point R (2, 5, 2.75) lies on the washing line. o
Z
(e) Determine, according to the model, the shortest distance from the point R to the lawn, =
giving your answer to the nearest cm. %
2
(2) r;;
Given that the shortest distance from the point R to the lawn is actually 1.5m, b
(f) use your answer to part (e) to evaluate the model, explaining your reasoning.
1)
O LM = OM-0L = (-2)-(-3]={1 -
- Q
0 | 1 z
- - Z -2 q \ =
N =R-0L=(o|-(-3)\=[3 =
0 -\ l | ;
G pusition vetter 5
Couadion of. plane = 1= +No+pt %
T 9 cireiON \RFOAS 2
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Question 4 continued
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Question 4 continued
d) The  woshing lne will vat e sroight
e \owin, whlk nak e Lok -
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= 2(0)+5(2)32.7500)-21. V1.9
V127 & 224 (0T 108

= 1.7\ m
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Figure 2

A block has length (» + 2)cm, width (» + 1)cm and height »cm, as shown in Figure 2.
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In a set of n such blocks, the first block has a height of 1 cm, the second block has a
height of 2 cm, the third block has a height of 3 cm and so on.

(a) Use the standard results for Zr3 ,Zrz and Zr to show that the total volume, V, of
r=1 r=1 r=1

all n blocks in the set is given by

V=%m+nm+am+$ n>1

C))

Given that the total volume of all n blocks is
(n*+6n*—11710) cm?

(b) determine how many blocks make up the set.

2
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5. 0) Volume = v (r+1)(r+2)

= r(r2+20+2) = 34324 9r
The Aovol volume o} nblods -

:2] (r3®+3¢2+9y)

- = 3+3L"+ZZI
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Question 5 continued

= _\_n'l(m—\\" +3 (.Ln(mﬂ(?.vw\\) + 2 ( _Ln(n+\\)
m 6 2
= nln+)) (r\"-\-\(\ +uny2 + '—\)
Y

= om0 (n2+5n +6) = i () (M 2) (N+3)
O

R v+ (n+3) = 0%+ 6n3 - 1710
Ty

(2 ) (2450 +6) = Unt + 2402 - 46840
M 49054602 +n3 +6nE+6n = Unt + 24n3 - 468UQ
It +18n? -unt -6n -uegU0 =0
n=1\0
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6.

(1)

(i)

2 a
A =
(a—4 b)

where a and b are non-zero constants.
Given that the matrix A is self-inverse,

(a) determine the value of b and the possible values for a.

(3)
The matrix A represents a linear transformation M.
Using the smaller value of a from part (a),

(b) show that the invariant points of the linear transformation M form a line, stating

the equation of this line.
2
pP= p <p
-1 3p

The matrix P represents a linear transformation U.
The triangle T has vertices at the points with coordinates (1, 2), (3, 2) and (2, 5).
The area of the image of 7" under the linear transformation U is 15

€))

where p is a positive constant.

(a) Determine the value of p.

C))

The transformation V consists of a stretch scale factor 3 parallel to the x-axis with the
y-axis invariant followed by a stretch scale factor —2 parallel to the y-axis with the x-axis
invariant. The transformation V' is represented by the matrix Q.

(b) Write down the matrix Q.
(2)

Given that U followed by V is the transformation W, which is represented by the matrix R,

(c) find the matrix R.
(2)

6.0 0) A xh'=T

.

3

-4 b

16

it A=A

ol x| 2 ol |20 +a(a-4) 2 +a(p)
-X LH\ b.x [').((3- W) + b(a)u) a(cx—)tr—b *o
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Question 6 continued
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Question 6 continued

b ¥ Open 0RX LV =19 = S x3

M(Q\ =9 %
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f)=z'+az* +bz*+cz+d

where a, b, ¢ and d are real constants.

The equation f(z) = 0 has complex roots z , z,, z, and z,
When plotted on an Argand diagram, the points representing z , z,, z, and z, form the
vertices of a square, with one vertex in each quadrant.

Given that z, = 2 + 3i, determine the values of a, b, ¢ and d.

(6)
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78 £(2)= z29+0z3 + bzt +Ccz2 40
Complex.  1O01S alSO oeour DA COMIUODIR. QarS
R 5 LY A
2-3L 0 rek

L PR = (z- 22 (z- -3 (2- 2,\(z-24)
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f@) = (22-uz+ l'b](z.’_Jr%zﬂ\
= (2% +uz® +62% + Uz +225)

o=y b=6 c= 4 d=325
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8. Prove by induction that, for n € Z*

f(n) — 2n+2 + 32n+1

=
MDUCTION © ~ Ak s o s
- Consdr n=k+| % reploco by osSwnphon | =
BAse C0Se : n=| - (ondusien %
{2(\\ : (\\+1 3’1(\\«-\ 5 23 N 33 _
35=9%7 - 1125 - stodemonk da §or n=\
AL AL o nmk 2 000 s sl by 7
(—'(\(\ _ 2&-\-‘1* 31\(—»-\ - TA NE 2 %
o eyl reomvomg. = 92X = 7 - Y :
c::z\ﬂ\ (\c-\-\\+'). N %1(“““" %
- Z\M'b N %m—r%
= 9 (2¢) + 33
= 2 (IA- zm—\) 23 §
= A - 2(3*) + 37 () g
= LA+ T7(2) = 7 (28 + ) g
=16 whar & €2 %
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Question 8 continued
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(Total for Question 8 is 6 marks)
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9. The cubic equation

3 +xr—4x+1=0

(&
has roots a, 5, and . %
—l
Without solving the cubic equation, E
(a) determine the value of ! + i+ 1 r:n
a p oy A3) E
(b) find a cubic equation that has roots l, 1 and l, giving your answer in the form ,%
a P
X} + ax* + bx + ¢ = 0, where a, b and ¢ are integers to be determined. E
3)
q.0) 22> +x*-ux+| =0
0+ + e +d=0 .
(@)
o(+BrY=-b  oBrol¥rPY=C  opY= =d :
o o o <
&
N
olrprY=-0 == o®ro(N+pY=C = -4  ofp¥=-d=-\ =
a3 (08 3 a 3z
>
=
o+ oY+ BY = _L.\._\__\._\_-_—__q/z =4 2
2BY Y ® ¢ 1%
D)
32> + k" =Ux+1=0 g
= 3 2 - S
w= 1 3(L|®+(L]|-4{L)+\=0O z
K W w W :
w = ) =
W 2 +W-Uwrrwd=0 3
>
=

Lusng  info. from port (a)
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Question 9 continued
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new equokion with roets L -
i oC 0 + o+ Cx+d=0
L\

b - = -
B prrs Lol (feom port @)
b=-U
L= yrar = ) \ \
o P+ Py “B+OCY +$Y
""‘Y'\'B‘\'O( = =\/32 _ c =\
(@Y =\/3
d'—'— Y = _‘__ = _l__- = _)_— = "5
&= oY oY -\/3%
d= 2

w2=4wi+ W+ 3 =0

(Total for Question 9 is 6 marks)
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10. Given that there are two distinct complex numbers z that satisfy

{z:|z -3- 5i| = Zr} N {z:arg(z -2) :%r}

determine the exact range of values for the real constant 7. g
AND @) 2
v i
0. {z:|z-(3xsi)\=2r} n {2z: axg(z-(?_\\=%} 2
,Lwdz cndve (3 %) L—ox%umm Nom | =
codius 27 (2,0) = 30 -
u‘
Gt equodion fr ticde - mmwwm 3
(-3 ¥ (y-8)*= (r}\* grod. = ( V=V |
(@)
- T T = 1oy w\(x %) g
SUbS\‘\‘\'\U& e why cirele - | 3 ‘5‘ ‘ =
, ) 1 y-0=-|(x-2) =
(x—%} —\-(—x—\-l-—‘.;\ = W :
) YW==HK+2 Z
Xl-bx4q ¥ xF 63+ =4r? | 5
t 3>
2%®? +\R-Ur?=0 |
Given Yok thore one 2 diskinek  complex vo.s .
Mone vuustH be 2 digtinek solubions 4o e 2quokion g
Lodisoiminonk >0 = bZ-uae > O 2
2% x (18-4r2) = 0 3
(0Y: -4 (2)(18-Ur2) = -\44 +22¢% >0 2
Yt s>9 -

2
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Question 10 continued
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© MO 2 = disknce dom cankve (3,5)
to (2,0)

= {M%+ (5% = J26
Mo vodinS = Mo K = 2r = 426

MK vy = J2e

2

—

$r>a 0 v <326
2 2

ce«-312 oy r>2J2
2 2

p—

3{2 < r< J2¢
2

2
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