www.mymathscloud.com

Please check the examination de	etails below	before entering	your candidate information		
Candidate surname		Oth	ner names		
Pearson Edexcel Level 3 GCE	Centre	e Number	Candidate Number		
Monday 11 M	May	2020			
Afternoon (Time: 1 hour 40 mir	nutes)	Paper Reference 8FM0/01			
Further Mathe Advanced Subsidiary Paper 1: Core Pure Ma					

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. A system of three equations is defined by

$$kx + 3y - z = 3$$

$$3x - y + z = -k$$

$$-16x - ky - kz = k$$

where k is a positive constant.

Given that there is no unique solution to all three equations,

(a) show that
$$k = 2$$

(2)

Using k = 2

(b) determine whether the three equations are consistent, justifying your answer.

(3)

(c) Interpret the answer to part (b) geometrically.

(1)

1.0) For simultaneous matrix equations:

$$MX = A$$

CONSISTENT SOLUTIONS:

if det M = 0 → no unique solution

L this means there are infinite solutions
INCONSISTENT SOLUTIONS:

L means there is

otherwise if det $M \neq 0 \rightarrow$ there is

no solution

a unique solution

$$\begin{bmatrix} K & 3 & -1 & | & x & | & 3 & | & Gi \\ 3 & -1 & 1 & | & y & | & = | & -K & | & \\ -16 & -K & -K & | & 7 & | & K & | & \end{bmatrix}$$

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \quad det A = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$\det \begin{pmatrix} K & 3 & -1 \\ 3 & -1 & 1 \\ -16 & -K & -K \end{pmatrix} = K \begin{pmatrix} -1 & 1 \\ -K & -K \end{pmatrix} - 3 \begin{vmatrix} 3 & 1 \\ -16 & -K \end{vmatrix} - \begin{vmatrix} 3 & -1 \\ -16 & -K \end{vmatrix}$$

$$= K (K+K) - 3 (-3K+16) - (-3K-16)$$

$$= 2K^2 + 12K - 32 = 0$$

Question 1 continued

$$K^2 + 6K - 16 = 0$$
 $(K+8)(K-2) = 0$ $K = -8 \cup 2$

1 given that K is positive ∴ reject -8

www.mymarhscloud.com

$$6) 2x + 3y - 7 = 3$$

$$3x - y + 2 = -2$$
 2

$$-16x - 2y - 2z = 2$$
 3

Eliminate z by
$$2x + 3y - z = 3$$

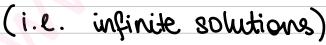
adding 0 & 2 $3x - y + z = -2$
 $5x + 2y = 1$

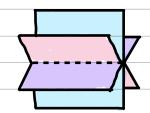
Eliminate z by
$$2(3x - y + 2) = 2(2)$$

adding 2(2) & (3) $\frac{1}{-16x - 2y - 2z} = 2$
 $-10x - 4y = -2$

$$-10x - 4y + 2 = -2(5x + 2y - 1)$$

- : because the 2 equations are linear multiples, the equations are consistent
- c) The 3 planes form a sheaf





(Total for Question 1 is 6 marks)

2. Given that

$$z_1 = 2 + 3i$$
$$|z_1 z_2| = 39\sqrt{2}$$
$$\arg(z_1 z_2) = \frac{\pi}{4}$$

where z_1 and z_2 are complex numbers,

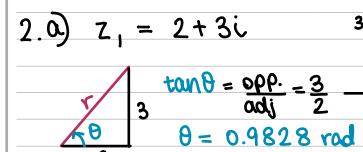
(a) write z_1 in the form $r(\cos\theta + i\sin\theta)$

Give the exact value of r and give the value of θ in radians to 4 significant figures.

(2)

(b) Find z, giving your answer in the form a + ib where a and b are integers.

(6)



$$r = \sqrt{2^2 + 3^2}$$

$$r = \sqrt{13}$$

$$z_1 = \sqrt{13}(\cos(0.9828) + i\sin(0.9828))$$

b)
$$|Z_1Z_2| = |Z_1| \times |Z_2|$$

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$$

$$Z_1 = \sqrt{13}(\cos(0.9828) + i\sin(0.9828))$$

$$|z_1| = \sqrt{13}$$
 arg $(z_1) = 0.9828$

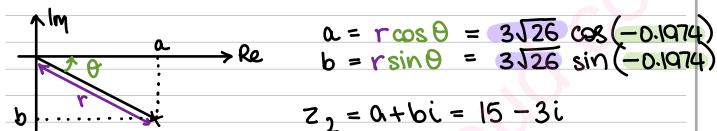
$$|Z_2| = \frac{39\sqrt{2}}{|Z_1|} = \frac{39\sqrt{2}}{\sqrt{13}} = 3\sqrt{26}$$

Question 2 continued

if
$$arg(z_1 z_2) = \frac{17}{4}$$

 $arg(z_2) = \frac{17}{4} - arg(z_1) = \frac{17}{4} - 0.9828$

$$arg(z_2) = -0.1974$$



(Total for Question 2 is 8 marks)

O NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

rigure i

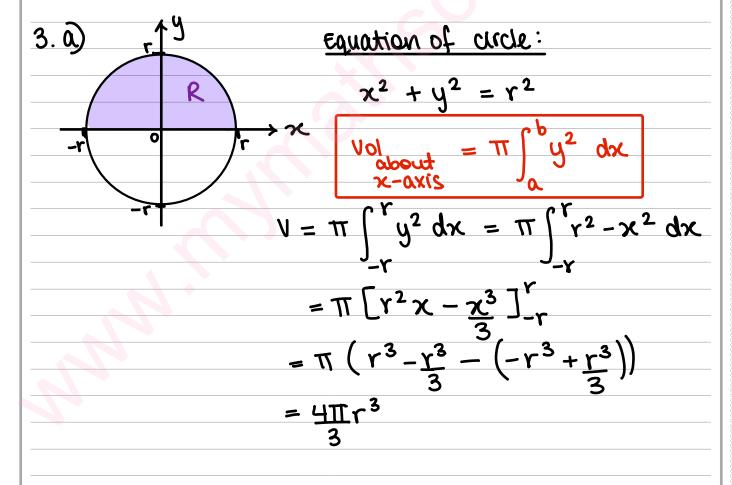
Figure 1 shows a circle with radius r and centre at the origin.

The region R, shown shaded in Figure 1, is bounded by the x-axis and the part of the circle for which y > 0

The region R is rotated through 360° about the x-axis to create a sphere with volume V

Use integration to show that $V = \frac{4}{3}\pi r^3$

(5)



O NOT WRITE IN THIS AREA

All units in this question are in metres.

A lawn is modelled as a plane that contains the points L(-2, -3, -1), M(6, -2, 0) and N(2, 0, 0), relative to a fixed origin O.

(a) Determine a vector equation of the plane that models the lawn, giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$

(3)

- (b) (i) Show that, according to the model, the lawn is perpendicular to the vector $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$
 - (ii) Hence determine a Cartesian equation of the plane that models the lawn.

(4)

There are two posts set in the lawn.

4.

There is a washing line between the two posts.

The washing line is modelled as a straight line through points at the top of each post with coordinates P(-10, 8, 2) and Q(6, 4, 3).

(c) Determine a vector equation of the line that models the washing line.

(2)

(d) State a limitation of one of the models.

(1)

The point R(2, 5, 2.75) lies on the washing line.

(e) Determine, according to the model, the shortest distance from the point *R* to the lawn, giving your answer to the nearest cm.

(2)

Given that the shortest distance from the point R to the lawn is actually 1.5 m,

(f) use your answer to part (e) to evaluate the model, explaining your reasoning.

(1)

4.a)
$$LM = 0M - 0l = \begin{pmatrix} 6 \\ -2 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}$$

$$LN = 0N - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$
Equation of plane: $r = a + \lambda b + \mu c$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$LA = 0M - 0l = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} =$$

Question 4 continued
$$r = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$

b) (i) if vectors a, b are perpendicular
$$a \cdot b = 0$$

: if the plane is perpendicular to
$$\begin{pmatrix} 1\\2\\-10 \end{pmatrix}$$

then both direction vectors in the plane are perpendicular

$$\begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} = 8(1) + (2) + (-10) = 0$$

$$\begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$$
 · $\begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$ = $4(1) + 3(2) + (-10) = 0$: perpendicular

L NOUNCE 40 bi

(ii) cartesian equation of plane:
$$r \cdot n = a \cdot n$$

$$\Upsilon \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix} = 2 \quad \Rightarrow \quad x + 2y - 10z = 2$$

c)
$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \begin{pmatrix} 6 \\ 4 \\ 3 \end{pmatrix} - \begin{pmatrix} -10 \\ 8 \\ 2 \end{pmatrix} = \begin{pmatrix} 16 \\ -4 \\ 1 \end{pmatrix}$$

$$\therefore r: \begin{pmatrix} -10 \\ 8 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 16 \\ -4 \\ 1 \end{pmatrix}$$

www.mymathscloud.com

Question 4 continued

d) The washing line will not be straight

The lawn will not be flat

e) shortest distance = [a·n+d]
from a point to a plane [n]

$$r = \begin{pmatrix} 2 \\ 5 \\ 2.75 \end{pmatrix} \qquad n = \begin{pmatrix} 1 \\ 2 \\ -10 \end{pmatrix}$$

- f) 1.7 m is significantly different to 1.5 m
 - : the model is not a very good model

5.

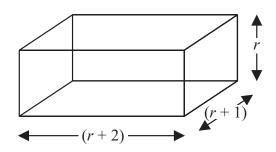


Figure 2

A block has length (r + 2) cm, width (r + 1) cm and height r cm, as shown in Figure 2.

In a set of n such blocks, the first block has a height of 1 cm, the second block has a height of 2 cm, the third block has a height of 3 cm and so on.

(a) Use the standard results for $\sum_{r=1}^{n} r^3$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$ to show that the **total** volume, V, of all *n* blocks in the set is given by

$$V = \frac{n}{4}(n+1)(n+2)(n+3) \qquad n \geqslant 1$$

(5)

Given that the total volume of all *n* blocks is

$$(n^4 + 6n^3 - 11710)$$
 cm³

(b) determine how many blocks make up the set.

(2)

5. a)
$$Volume = r(r+1)(r+2)$$

$$= r(r^2 + 3r + 2) = r^3 + 3r^2 + 2r$$

The total volume of n blocks:

$$\sum_{r=1}^{n} (r^3 + 3r^2 + 2r)$$

$$= \sum_{r=1}^{2} r^{3} + 3 \sum_{r=1}^{2} r^{2} + 2 \sum_{r=1}^{2} r$$

USING STANDARD SUMMATIONS

2 Handma

$$\sum_{i=1}^{n} \frac{1}{4} n^2 (n+1)^2 \sum_{i=1}^{n} \frac{1}{6} = \sum_{i=1}^{n} (n+1)(2n+1)$$
from formula booklet

O NOT WRITE IN THIS AREA

Question 5 continued

$$= \frac{1}{4}n^{2}(n+1)^{2} + 3\left(\frac{1}{6}n(n+1)(2n+1)\right) + 2\left(\frac{1}{2}n(n+1)\right)$$

$$= \frac{n(n+1)}{4} (n^2 + n + 4n + 2 + 4)$$

$$= \frac{n(n+1)(n^2+5n+6)}{4} = \frac{1}{4}n(n+1)(n+2)(n+3)$$

b)
$$\ln(n+1)(n+2)(n+3) = n^4 + 6n^3 - 11710$$

$$(n^2+n)(n^2+5n+6) = 4n^4 + 24n^3 - 46840$$

$$n^4 + 5n^3 + 6n^2 + n^3 + 5n^2 + 6n = 4n^4 + 24n^3 - 46840$$

$$3n^4 + 18n^3 - 11n^2 - 6n - 46840 = 0$$

6. (i)

$$\mathbf{A} = \begin{pmatrix} 2 & a \\ a - 4 & b \end{pmatrix}$$

where a and b are non-zero constants.

Given that the matrix A is self-inverse,

(a) determine the value of b and the possible values for a.

The matrix **A** represents a linear transformation M.

Using the smaller value of a from part (a),

(b) show that the invariant points of the linear transformation M form a line, stating the equation of this line.

(3)

(ii)

$$\mathbf{P} = \begin{pmatrix} p & 2p \\ -1 & 3p \end{pmatrix}$$

where p is a positive constant.

The matrix **P** represents a linear transformation U.

The triangle T has vertices at the points with coordinates (1, 2), (3, 2) and (2, 5).

The area of the image of T under the linear transformation U is 15

(a) Determine the value of p.

(4)

The transformation V consists of a stretch scale factor 3 parallel to the x-axis with the y-axis invariant followed by a stretch scale factor –2 parallel to the y-axis with the x-axis invariant. The transformation V is represented by the matrix \mathbf{Q} .

(b) Write down the matrix **Q**.

(2)

Given that U followed by V is the transformation W, which is represented by the matrix R,

(c) find the matrix R.

(2)

6.(i) a)
$$A \times A^{-1} = I$$

$$\therefore if A = A^{-1}$$

$$\begin{bmatrix} 2 & \alpha \\ \alpha-4 & b \end{bmatrix} \times \begin{bmatrix} 2 & \alpha \\ \alpha-4 & b \end{bmatrix} = \begin{bmatrix} 2(2) + \alpha(\alpha-4) & 2(\alpha) + \alpha(b) \\ 2(\alpha-4) + b(\alpha-4) & \alpha(\alpha-4) + b(b) \end{bmatrix}$$

Question 6 continued

$$= \begin{bmatrix} a^2 - 4a + 4 & 2a + ab \\ 2a - 8 + ab - 4b & a^2 - 4a + b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$a^2 - 4a + 4 = 1$$
 $2a + ab = 0 \longrightarrow a(2 + b) = 0$

4 but we know

$$2a+ab-4b=8$$
 $a^2-4a+b^2=1$ $a\neq 0$

$$a^{2}-4a+(-2)^{2}=1$$

$$a^{2}-4a+3=0$$

$$(a-3)(a-1)=0$$

b)
$$\begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix}$$
 $\begin{bmatrix} x \\ y \end{bmatrix}$ invariant means the same

$$\begin{bmatrix} 2x + y \\ -3x - 2y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Set like components equal:

$$y = -x$$
 : $y + x = 0$

(ii)
$$P = \begin{bmatrix} P & 2P \\ -1 & 3P \end{bmatrix}$$

The determinant

gives the scale factor

for a transformation

Question 6 continued

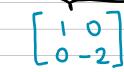
If the area after
$$V = 15 = 5 \times 3$$

$$det(P) = 5$$

$$det(P) = 3p^2 + 2p = 5$$

$$3p^2 + 2p - 5 = 0$$
 $(3p + 5)(p - 1) = 0$
 $p = 10 - 5$
 $p = 10 - 5$
 $p = 10 - 5$
 $p = 10 - 5$

represented by matrix Q



Transformation A followed by B is represented by the matrix BA

$$\therefore Q = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 2 & -6 \end{bmatrix}$$

7.

$$f(z) = z^4 + az^3 + bz^2 + cz + d$$

where a, b, c and d are real constants.

The equation f(z) = 0 has complex roots z_1, z_2, z_3 and z_4

When plotted on an Argand diagram, the points representing z_1 , z_2 , z_3 and z_4 form the vertices of a square, with one vertex in each quadrant.

Given that $z_1 = 2 + 3i$, determine the values of a, b, c and d.

(6)

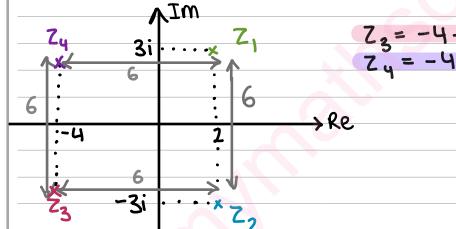
7. a)
$$f(z) = z^4 + az^3 + bz^2 + cz + d$$

complex mots also occur in conjugate pairs

: if 2+3i is a root

2-3i is a nost

$$f(z) = (z - (2+3i))(z - (2-3i))(z - z_3)(z - z_4)$$



$$f(2) = (z^2 - 4z + 13)(z^2 + 8z + 25)$$

$$= (7^4 + 47^3 + 67^2 + 47 + 325)$$

$$a = 4$$
 $b = 6$ $c = 4$ $d = 325$

8. Prove by induction that, for $n \in \mathbb{Z}^+$

$$f(n) = 2^{n+2} + 3^{2n+1}$$

is divisible by 7

(6)

- Prove true for base case

INDUCTION: - Assume true for n=K - Consider n=k+1 & replace by assumption - Conclusion

Base case: n=1

$$f(1) = 2^{(1)+2} + 3^{2(1)+1} = 2^3 + 3^3 = 35$$

-: f(K) is divisible by 7 Assume true for n=k

$$f(K) = 2^{K+2} + 3^{2K+1} = 7A$$
 A $\in \mathbb{Z}$

rearrange:
$$2^{K+2} = 7A - 3^{2K+1}$$

consider n=k+1

$$f(k+1) = 2^{(k+1)+2} + 3^{(k+1)+1}$$

$$= 2^{K+3} + 3^{2K+3}$$

$$= 2(2^{k+1}) + 3^{2k+3}$$

$$= 2(7A-3^{2K+1}) + 3^{2K+3}$$

$$= 14A - 2(3^{2K+1}) + 3^{2}(3^{2K+1})$$

$$= 14A + 7(3^{2K+1}) = 7(2A + 3^{2K+1})$$

: hence f(K+1) also divisible by 7

ince statement is true for n=1, and we have proved if true for n=k+1, thus by mathematically induction, the result holds true for all positive integers								-0-
VCQ.	stateme	nt is	mie.	for n=	1, and	we have	e proved	if
We due	100 N=	c, tt	is tru	e for n	= K+1)	thus b	nd worther	voric
(UMI	shon, th	e resw	t wold	is thue	for on	positive	integers	

9. The cubic equation

$$3x^3 + x^2 - 4x + 1 = 0$$

has roots α , β , and γ .

Without solving the cubic equation,

(a) determine the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

- (b) find a cubic equation that has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$, giving your answer in the form $x^3 + ax^2 + bx + c = 0$, where a, b and c are integers to be determined.
- (3)

$$9.0) 3x^3 + x^2 - 4x + 1 = 0$$

$$ax^3 + bx^2 + cx + d = 0$$

$$\alpha(+\beta+\gamma=-\frac{b}{\alpha})$$
 $\alpha(\beta+\alpha(\gamma+\beta\gamma=\frac{c}{\alpha}))$ $\alpha(\beta\gamma=-\frac{d}{\alpha})$

$$\alpha(+\beta+\gamma=-\frac{1}{\alpha}=-\frac{1}{3})\alpha(\beta+\alpha(\gamma+\beta\gamma=\frac{c}{\alpha}=-\frac{1}{3})\alpha(\beta\gamma=-\frac{d}{\alpha}=-\frac{1}{3})$$

$$\frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma} = \frac{1}{\gamma} + \frac{1}{\beta} + \frac{1}{\alpha} = \frac{-4/3}{-1/3} = 4$$

(using substitution):

$$3x^3 + x^2 - 4x + 1 = 0$$

$$w = \frac{1}{x} \qquad 3\left(\frac{1}{\omega}\right)^3 + \left(\frac{1}{\omega}\right)^2 - 4\left(\frac{1}{\omega}\right) + 1 = 0$$

$$3 + W - 4W^2 + W^3 = 0$$

Lusing info. from part (a)

Question 9 continued

new equation with roots
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ new equation $\frac{1}{\alpha x^3 + bx^2 + cx + d} = 0$

$$-\frac{b}{a} = p + q + r = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 4 \quad \text{(from part (a))}$$

$$\frac{c}{a} = pq + pr + qr = \frac{1}{\alpha\beta} + \frac{1}{\alpha\gamma} + \frac{1}{\beta\gamma}$$

$$= \frac{\gamma + \beta + \alpha}{\alpha\beta\gamma} = -\frac{1/3}{-1/3} = 1 \qquad c = 1$$

$$\frac{-d}{a} = \rho q r = \frac{1}{\alpha \beta \gamma} = \frac{1}{\alpha \beta \gamma} = \frac{1}{-1/3} = -3$$

$$w^3 - 4w^2 + w + 3 = 0$$

(Total for Question 9 is 6 marks)

10. Given that there are two distinct complex numbers z that satisfy

$${z:|z-3-5i|=2r} \cap {z:arg(z-2)=\frac{3\pi}{4}}$$

determine the exact range of values for the real constant r.

$$\int_{0}^{\infty} \frac{1}{2} \cdot \operatorname{Ord}\left(2 - \left(2\right)\right) = 3\pi$$

10.
$$\{z:|z-(3+5i)|=2r\}$$
 $\cap \{z:arg(z-(2))=\frac{3\pi}{4}\}$

Circle: courtre (3,5) radius 2

(7)

Contesion equotion for circle:

cartesian equation for line:

$$(x-3)^2 + (y-5)^2 = (2r)^2$$
 grad. = $\frac{opp.}{adj.}$ = $tan(\frac{311}{4}) = -1$

 $y-y_1=m(x-x_1)$ substitute une into circle:

$$(x-3)^2 + (-x+2-5)^2 = 4r^2$$

$$\frac{1}{x^2-6x+9+x^2+6x+9=4r^2}$$

$$2\kappa^2 + 18 - 4r^2 = 0$$

there must be 2 distinct solutions to the equation

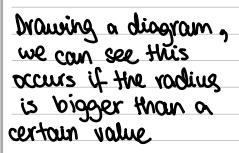
$$2x^2 + (18 - 4r^2) = 0$$

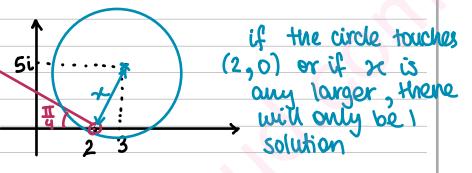
$$(0)^2 - 4(2)(18 - 4r^2) = -144 + 32r^2 > 0$$

$$r^2 > \frac{9}{2}$$

Question 10 continued

www.mymathscloud.com However this ensures 2 solutions for an intersection with the circle & the line, however $\{z: arg(z-2) = 3\Pi\}$ is only a half line, so any intersections below (2,0) one not valid.





:
$$\max x = \text{distance from coutre } (3,5)$$

to $(2,0)$

$$= \sqrt{(1)^2 + (5)^2} = \sqrt{26}$$

max radius = max
$$x = 2r = \sqrt{26}$$

$$\max_{x \in \sqrt{26}} x = \sqrt{26}$$

: if
$$r^2 > 9$$
 $r < \sqrt{26}$

$$r < -3\sqrt{2} \quad v \quad r > 3\sqrt{2}$$

